老石器实现自动寻路的相关代码

2019-11-0610:51石器单机版石器

距离估计与实际值越接近,估价函数取得就越好

例如对于几何路网来说,可以取两节点间曼哈顿距离做为距离估计,即f=g(n) + (abs(dx - nx) + abs(dy - ny));这样估价函数f(n)在g(n)一定的情况下,会或多或少的受距离估计值h(n)的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijkstra算法的毫无方向的向四周搜索。

算法实现(路径搜索)

创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。

算起点的h(s);

将起点放入OPEN表;

C
while(OPEN!=NULL){
    从OPEN表中取f(n)最小的节点n;
    if(n节点==目标节点)
        break;
    for(当前节点n的每个子节点X)
    {
        计算f(X);
        if(XinOPEN)
            if(新的f(X)<OPEN中的f(X))
            {
                把n设置为X的父亲;
                更新OPEN表中的f(n);
            }
        if(XinCLOSE)
            continue;
        if(Xnotinboth)
        {
            把n设置为X的父亲;
            求f(X);
            并将X插入OPEN表中;//还没有排序
        }
    }//endfor
    将n节点插入CLOSE表中;
    按照f(n)将OPEN表中的节点排序;//实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。}//endwhile(OPEN!=NULL)

保存路径,即从终点开始,每个节点沿着父节点移动直至起点,这就是你的路径;
用C语言实现A*最短路径搜索算法

C
#include <stdio.h>#include <math.h>
  #define MaxLength 100    //用于优先队列(Open表)的数组#define Height     15    //地图高度#define Width      20    //地图宽度
  #define Reachable   0    //可以到达的结点#define Bar         1    //障碍物#define Pass        2    //需要走的步数#define Source      3    //起点#define Destination 4    //终点
  #define Sequential  0    //顺序遍历#define NoSolution  2    //无解决方案#define Infinity    0xfffffff
  #define East       (1 << 0)#define South_East (1 << 1)#define South      (1 << 2)#define South_West (1 << 3)#define West       (1 << 4)#define North_West (1 << 5)#define North      (1 << 6)#define North_East (1 << 7)
  typedef struct{
    signed char x, y;} Point;
  const Point dir[8] ={
    {0, 1},   // East
    {1, 1},   // South_East
    {1, 0},   // South
    {1, -1},  // South_West
    {0, -1},  // West
    {-1, -1}, // North_West
    {-1, 0},  // North
    {-1, 1}   // North_East};
  unsigned char within(int x, int y){
    return (x >= 0 && y >= 0
        && x < Height && y < Width);}
  typedef struct{
    int x, y;
    unsigned char reachable, sur, value;} MapNode;
  typedef struct Close{
    MapNode *cur;
    char vis;
    struct Close *from;
    float F, G;
    int H;} Close;
  typedef struct //优先队列(Open表){
    int length;        //当前队列的长度
    Close* Array[MaxLength];    //评价结点的指针} Open;
  static MapNode graph[Height][Width];static int srcX, srcY, dstX, dstY;    //起始点、终点static Close close[Height][Width];
  // 优先队列基本操作void initOpen(Open *q)    //优先队列初始化{
    q->length = 0;        // 队内元素数初始为0}
  void push(Open *q, Close cls[Height][Width], int x, int y, float g){    //向优先队列(Open表)中添加元素
    Close *t;
    int i, mintag;
    cls[x][y].G = g;    //所添加节点的坐标
    cls[x][y].F = cls[x][y].G + cls[x][y].H;
    q->Array[q->length++] = &(cls[x][y]);
    mintag = q->length - 1;
    for (i = 0; i < q->length - 1; i++)
    {
        if (q->Array[i]->F < q->Array[mintag]->F)
        {
            mintag = i;
        }
    }
    t = q->Array[q->length - 1];
    q->Array[q->length - 1] = q->Array[mintag];
    q->Array[mintag] = t;    //将评价函数值最小节点置于队头}
  Close* shift(Open *q){
    return q->Array[--q->length];}
  // 地图初始化操作void initClose(Close cls[Height][Width], int sx, int sy, int dx, int dy){    // 地图Close表初始化配置
    int i, j;
    for (i = 0; i < Height; i++)
    {
        for (j = 0; j < Width; j++)
        {
            cls[i][j].cur = &graph[i][j];        // Close表所指节点
            cls[i][j].vis = !graph[i][j].reachable;        // 是否被访问
            cls[i][j].from = NULL;                // 所来节点
            cls[i][j].G = cls[i][j].F = 0;
            cls[i][j].H = abs(dx - i) + abs(dy - j);    // 评价函数值
        }
    }
    cls[sx][sy].F = cls[sx][sy].H;            //起始点评价初始值
    //    cls[sy][sy].G = 0;                        //移步花费代价值
    cls[dx][dy].G = Infinity;}
  void initGraph(const int map[Height][Width], int sx, int sy, int dx, int dy){    //地图发生变化时重新构造地
    int i, j;
    srcX = sx;    //起点X坐标
    srcY = sy;    //起点Y坐标
    dstX = dx;    //终点X坐标
    dstY = dy;    //终点Y坐标
    for (i = 0; i < Height; i++)
    {
        for (j = 0; j < Width; j++)
        {
            graph[i][j].x = i; //地图坐标X
            graph[i][j].y = j; //地图坐标Y
            graph[i][j].value = map[i][j];
            graph[i][j].reachable = (graph[i][j].value == Reachable);    // 节点可到达性
            graph[i][j].sur = 0; //邻接节点个数
            if (!graph[i][j].reachable)
            {
                continue;
            }
            if (j > 0)
            {
                if (graph[i][j - 1].reachable)    // left节点可以到达
                {
                    graph[i][j].sur |= West;
                    graph[i][j - 1].sur |= East;
                }
                if (i > 0)
                {
                    if (graph[i - 1][j - 1].reachable                        && graph[i - 1][j].reachable                        && graph[i][j - 1].reachable)    // up-left节点可以到达
                    {
                        graph[i][j].sur |= North_West;
                        graph[i - 1][j - 1].sur |= South_East;
                    }
                }
            }
            if (i > 0)
            {
                if (graph[i - 1][j].reachable)    // up节点可以到达
                {
                    graph[i][j].sur |= North;
                    graph[i - 1][j].sur |= South;
                }
                if (j < Width - 1)
                {
                    if (graph[i - 1][j + 1].reachable                        && graph[i - 1][j].reachable                        && map[i][j + 1] == Reachable) // up-right节点可以到达
                    {
                        graph[i][j].sur |= North_East;
                        graph[i - 1][j + 1].sur |= South_West;
                    }
                }
            }
        }
    }}
  int bfs(){
    int times = 0;
    int i, curX, curY, surX, surY;
    unsigned char f = 0, r = 1;
    Close *p;
    Close* q[MaxLength] = { &close[srcX][srcY] };
  
    initClose(close, srcX, srcY, dstX, dstY);
    close[srcX][srcY].vis = 1;
  
    while (r != f)
    {
        p = q[f];
        f = (f + 1) % MaxLength;
        curX = p->cur->x;
        curY = p->cur->y;
        for (i = 0; i < 8; i++)
        {
            if (! (p->cur->sur & (1 << i)))
            {
                continue;
            }
            surX = curX + dir[i].x;
            surY = curY + dir[i].y;
            if (! close[surX][surY].vis)
            {
                close[surX][surY].from = p;
                close[surX][surY].vis = 1;
                close[surX][surY].G = p->G + 1;
                q[r] = &close[surX][surY];
                r = (r + 1) % MaxLength;
            }
        }
        times++;
    }
    return times;}
  int astar(){    // A*算法遍历
    //int times = 0;
    int i, curX, curY, surX, surY;
    float surG;
    Open q; //Open表
    Close *p;
  
    initOpen(&q);
    initClose(close, srcX, srcY, dstX, dstY);
    close[srcX][srcY].vis = 1;
    push(&q, close, srcX, srcY, 0);
  
    while (q.length)
    {    //times++;
        p = shift(&q);
        curX = p->cur->x;
        curY = p->cur->y;
        if (!p->H)
        {
            return Sequential;
        }
        for (i = 0; i < 8; i++)
        {
            if (! (p->cur->sur & (1 << i)))
            {
                continue;
            }
            surX = curX + dir[i].x;
            surY = curY + dir[i].y;
            if (!close[surX][surY].vis)
            {
                close[surX][surY].vis = 1;
                close[surX][surY].from = p;
                surG = p->G + sqrt((curX - surX) * (curX - surX) + (curY - surY) * (curY - surY));
                push(&q, close, surX, surY, surG);
            }
        }
    }
    //printf("times: %d\n", times);
    return NoSolution; //无结果}
  const int map[Height][Width] = {
    {0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1},
    {0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},
    {0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1},
    {0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0},
    {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1},
    {0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0},
    {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0},
    {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
    {0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0},
    {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
    {0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0},
    {0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0},
    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0},
    {0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,1},
    {0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}};
  const char Symbol[5][3] = { "□", "▓", "▽", "☆", "◎" };
  void printMap(){
    int i, j;
    for (i = 0; i < Height; i++)
    {
        for (j = 0; j < Width; j++)
        {
            printf("%s", Symbol[graph[i][j].value]);
        }
        puts("");
    }
    puts("");}
  Close* getShortest(){    // 获取最短路径
    int result = astar();
    Close *p, *t, *q = NULL;
    switch(result)
    {
    case Sequential:    //顺序最近
        p = &(close[dstX][dstY]);
        while (p)    //转置路径
        {
            t = p->from;
            p->from = q;
            q = p;
            p = t;
        }
        close[srcX][srcY].from = q->from;
        return &(close[srcX][srcY]);
    case NoSolution:
        return NULL;
    }
    return NULL;}
  static Close *start;static int shortestep;int printShortest(){
    Close *p;
    int step = 0;
  
    p = getShortest();
    start = p;
    if (!p)
    {
        return 0;
    }
    else
    {
        while (p->from)
        {
            graph[p->cur->x][p->cur->y].value = Pass;
            printf("(%d,%d)→\n", p->cur->x, p->cur->y);
            p = p->from;
            step++;
        }
        printf("(%d,%d)\n", p->cur->x, p->cur->y);
        graph[srcX][srcY].value = Source;
        graph[dstX][dstY].value = Destination;
        return step;
    }}
  void clearMap(){    // Clear Map Marks of Steps
    Close *p = start;
    while (p)
    {
        graph[p->cur->x][p->cur->y].value = Reachable;
        p = p->from;
    }
    graph[srcX][srcY].value = map[srcX][srcY];
    graph[dstX][dstY].value = map[dstX][dstY];}
  void printDepth(){
    int i, j;
    for (i = 0; i < Height; i++)
    {
        for (j = 0; j < Width; j++)
        {
            if (map[i][j])
            {
                printf("%s ", Symbol[graph[i][j].value]);
            }
            else
            {
                printf("%2.0lf ", close[i][j].G);
            }
        }
        puts("");
    }
    puts("");}
  void printSur(){
    int i, j;
    for (i = 0; i < Height; i++)
    {
        for (j = 0; j < Width; j++)
        {
            printf("%02x ", graph[i][j].sur);
        }
        puts("");
    }
    puts("");}
  void printH(){
    int i, j;
    for (i = 0; i < Height; i++)
    {
        for (j = 0; j < Width; j++)
        {
            printf("%02d ", close[i][j].H);
        }
        puts("");
    }
    puts("");}
  int main(int argc, const char **argv){
    initGraph(map, 0, 0, 0, 0);
    printMap();
  
    while (scanf("%d %d %d %d", &srcX, &srcY, &dstX, &dstY) != EOF)
    {
        if (within(srcX, srcY) && within(dstX, dstY))
        {
            if (shortestep = printShortest())
            {
                printf("从(%d,%d)到(%d,%d)的最短步数是: %d\n",
                    srcX, srcY, dstX, dstY, shortestep);
                printMap();
                clearMap();
                bfs();
                //printDepth();
                puts((shortestep == close[dstX][dstY].G) ? "正确" : "错误");
                clearMap();
            }
            else
            {
                printf("从(%d,%d)不可到达(%d,%d)\n",
                    srcX, srcY, dstX, dstY);
            }
        }
        else
        {
            puts("输入错误!");
        }
    }
    return (0);}



石器时代历史 PC端石器任务 石器时代俱乐部 石器cc 石器时代7.5